Vertex Sparsification of Cuts, Flows, and Distances

Robert Krauthgamer, Weizmann Institute of Science

WorKer 2015, Nordfjordeid
Graph Sparsification

- Vast literature on "compression" (succinct representation) of graphs
 - We focus on preserving specific features – distances, cuts, etc.

- Edge sparsification:
 - Cut and spectral sparsifiers [Benczur-Karger, …, Batson-Spielman-Srivastava]
 - Spanners and distance oracles [Peleg-Schaffer, …, Thorup-Zwick,…]

- Vertex sparsification (keep only the “terminal” vertices)
 - Cut/multicommodity-flow sparsifier [Moitra,….Chuzhoy]
 - Distances [Gupta, Coppersmith-Elkin]

Graphical representation

Fast query time

or mostly

exactly/approximately
Terminal Cuts

- Network G with edge capacities $c: E(G) \rightarrow \mathbb{R}_+$. ("huge" network)
- k terminals $K^{1/2}V(G)$ ("important" vertices)

We care about terminal cuts:
- $\text{mincut}_G(S) =$ minimum-capacity cut separating $S^{1/2}K$ and $\overline{S} = K \setminus S$.
- (Equivalent to the maximum flow between S and \overline{S}.)
Mimicking Networks

A mimicking network of \((G, c)\) is a network \((G', c')\) with same terminals and \(8S \mu K, \text{mincut}_G(S) = \text{mincut}_{G'}(S)\).

Theorem [Hagerup-Katajainen-Nishimura-Ragde’95]. Every \(k\)-terminal network has a mimicking network of \(\cdot 2^{2k}\) vertices.

- **Pro:** independent of \(n=|V(G)|\)
- **Con:** more wasteful than listing the \(2^k\) cut values
- (Originally proved for directed networks)

Intuition: There are \(\cdot 2^k\) relevant cuts (choices for \(S\)), which jointly partition the vertices to \(\cdot 2^{2k}\) “buckets”; merge each bucket …
Natural Questions

- Narrow the **doubly-exponential gap**?
- Better bounds for specific **graph families**?
- Represent these cut values **more succinctly**?
 - Anything better than a list of 2^k values?
 - Remark: function $\text{mincut}_G(.)$ is submodular
Our Results [K.-Rika’13]

<table>
<thead>
<tr>
<th>Graph Family</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>General graphs</td>
<td>≥ 2^k</td>
<td>2^{2k} [HKNR]</td>
</tr>
<tr>
<td>Star graph</td>
<td>$k+1$ [CSWZ]</td>
<td></td>
</tr>
</tbody>
</table>

Theorem [No succinct representation]: Any storage of the terminal-cut values requires $2^{\Omega(k)}$ machine words. (word = $\log n$ bits)

[Chaudhuri-Subrahmanyam-Wagner-Zaroliagis’98]
[Hagerup-Katajainen-Nishimura-Ragde’95]
[Khan-Raghavendra’14]
Upper Bound for Planar Graphs

Theorem 1. Every planar k-terminal network G admits a mimicking network of size $\cdot O(k^2 2^{2k})$; furthermore, this G' is a minor of G.

- Algorithm: merge vertices whenever possible, similarly to [HKNR]
 - Precisely, remove cuts then contract every CC (yields a planar graph)
 - Let $E_S \mu E$ be the cutset realizing $\text{mincut}_G(S)$ [wlog it’s unique]

- Lemma 1a. Removing E_S breaks G into $\cdot k$ CCs
 - That is, for all $S \subseteq K$, $|CC(G \setminus E_S)| \cdot k$.

V:

![Diagram of a planar graph showing cutsets and terminals]

$S = \{t_2, t_3, t_5\}$

Idea: a CC containing no terminals can be merged with another CC.
Two Cutsets Together

- **Lemma 1b.** For all $S, T^{1/2} K$,

 $$|CC(G^n(E_S[E_T]))| \cdot |CC(G^nE_S)| + |CC(G^nE_T)| + k \cdot 3k.$$
 (even without planarity)

Idea: Every CC must either contain a terminal or be (exactly) a CC of G^nE_S or of G^nE_T. Otherwise, we can “improve” one of the cuts.

\[T = \{t_2, t_4\} \]

\[S = \{t_3\} \]
Leveraging Planarity

- Let E_S^* be the dual edges to E_S.
 - It is a union of cycles (called circuit), at most k of them by Lemma 1a.

- Lemma 1c. The union $\bigcup S(E_S^*)$ partitions the plane into $\cdot O(k^2 2^{2k})$ “connected regions”.

- Idea: By Euler’s formula, it suffices to sum up all vertex degrees >2. These are “attributed” to some intersection $E_S^* \& E_T^*$. Every pair S,T “contributes” $\cdot O(k^2)$ by Lemma 1b and Euler’s formula.
Theorem 2. For every $k > 5$ there is a k-terminal network, whose mimicking networks must have size $\Omega(\log k)$.

- Proved independently by [Khan-Raghavendra’14]

Proof Sketch: consider a bipartite graph

- Lemma 2a. Each $\text{mincut}_G(S)$ is obtained uniquely (u_S vs. the rest)
- Thus, each green edge belongs to only one cut.

Intuition for next step: Graphs G' with few edges have insufficient “degrees of freedom” to create these $2^{\Omega(k)}$ cuts. Use linear algebra...
Lower Bounds - Techniques

- **Lemma 2b.** The cutset-edge incidence matrix A_G has $\text{rank}(A_G) \geq 2^{\Omega(k)}$.

$$
\begin{align*}
S \subset K & \rightarrow \\
& \left(\begin{array}{c}
e \in E \\
1_{\{e \in \text{mincut}(S)\}}
\end{array} \right) \cdot \left(\begin{array}{c}
c(e) \\
\vdots
\end{array} \right) = \left(\begin{array}{c}
\text{mincut}(S) \\
\vdots
\end{array} \right)
\end{align*}
$$

- **Lemma 2c.** WHP, after perturbing capacities to c^\wedge (add noise $2[0,2]$), every mimicking network (G',c') satisfies $|E(G')| \geq \text{rank}(A_G)$.

- **Difficulty:** Infinitely-many possible c', cannot take union bound...

- **Workaround:**
 - Fix G' (without capacities c') and a matrix $A_{G'}$.
 - $\Pr[9c' \text{ such that } (G',c') \text{ mimicks } (G,c^\wedge)] = 0$.
 - Union bound over finitely many G' and $A_{G'}$.
Succinct Representation

- **Theorem 3.** Every (randomized) data structure that stores the terminal-cut values of a network requires $2^{\Omega(k)}$ memory words.

 - Thus, naively listing all 2^k cut values achieves optimal storage.

Proof Sketch:

- Use the same bipartite graph.
- “Plant” r arbitrary bits by perturbing r edge capacities.
- Since $\text{rank}(A_G) \geq r$, the bits can be recovered from the mincut values.
- Hence, data structure must have $\Omega(r)$ bits.
Further Questions About Cuts

- Close the (still) exponential gap?
 - Perhaps show the directed case is significantly different?

- Extend the planar upper bound
 - To excluded-minor graphs?
 - To vertex-cuts or directed networks?

- Extend to multi-commodity flows?
 - A stronger requirement than cuts

- Smaller network size by allowing approximation of cuts?
 - We already know size is some function $s(k)$, independent of n
 - Our lower bound is not “robust”
Approximate Vertex-Sparsifiers

Definition: Quality = approximation-factor guarantee for all cuts

- **Extreme case:** retain only terminals, i.e. $s(k) = k$ [Moitra’09]
 - Quality $O(\log k / \log \log k)$ is possible [Charikar-Leighton-Li-Moitra’10, Makarychev-Makarychev’10, Englert-Gupta-K.-Raecke-TalgamCohen-Talwar’10]
 - And $\Omega((\log k)^{1/2} / \log \log k)$ is required [Makarychev-Makarychev’10]

- **Goal:** constant-factor quality using network size $<< 2^{2^k}$?
 - Maybe even $(1 + ^2)$-quality using size $s'(k, 2)$

- **Theorem [Chuzhoy’12].** $O(1)$-quality using network size $C^{O(\log \log C)}$
 - where C is total capacity of edges incident to terminals
 - Note: C might grow with $n = |V|
Our Results [Andoni-Gupta-K.’14]

- **Theorem 4.** Bipartite* networks admit \((1+\sqrt{2})\)-quality sparsifiers of size \(\text{poly}(k/2)\)
 - Bipartite* = the non-terminals form an independent set
 - Bypasses \(2^{\Omega(k)}\) bound we saw for exact sparsifiers (even in bipartite)

- **Theorem 5.** Networks of treewidth \(w\) admit \(O(\log w / \log \log w)\)-quality (flow) sparsifiers of size \(O(w \cdot \text{poly}(k))\)

- **Theorem 6.** Series-parallel networks admit exact (quality 1) (flow) sparsifiers of size \(O(k)\)
Main Idea: Structure Sampling

- Edge sampling useful for *edge*-sparsifiers [BK’96, SS’11]
- But does not work here, need to sample entire *sub-structures*
Sampling in Bipartite Graphs

- Sample non-terminal vertices, together with incident edges
 - reweight edges accordingly

Vertex Sparsification of Cuts, Flows, and Distances

17
Sampling in Bipartite Graphs

- Sample **non-terminal vertices**, together with incident edges
 - reweight edges accordingly
- Uniform sampling does not work
Non-uniform Sampling

- Non-terminal v has sampling probability p_v
- If sampled, reweight edges by factor $1/p_v$
- Expectation is right:
 - Consider a partition $K = S \cup T$
 - $\text{mincut}(S, T) = \sum_v \min\{c(v, S), c(v, T)\}$
 - $\text{mincut}'(S, T) = \sum_v \frac{I_v}{p_v} \cdot \min\{c(v, S), c(v, T)\}$

Vertex Sparsification of Cuts, Flows, and Distances 19
How to choose p_v?

- **Want**
 1) concentrates
 \[\text{mincut}(S,T) = \sum_v \frac{l_v}{p_v} \cdot \min\{c(v,S), c(v,T)\} \]
 concentrates
 2) small i.e.
 \[\sum_v p_v \text{ small i.e. } \text{poly}\left(\frac{k}{\epsilon}\right) \]
- **Issue**: contribution can come from just a few terms
- **Issue**: contribution can come from just a few terms
Importance sampling

- \(\text{mincut}'(S, T) = \sum_v \frac{l_v}{p_v} \cdot \min\{c(v, S), c(v, T)\} \)

Idea 1: Choose proportional to contribution

- **Issue:** contribution depends on partition, but \(p_v \) cannot

Idea 2: for any \(K = S \cup T \), large contribution comes from one pair of terminals

- **Issue:** contribution depends on partition \(S \cup T \), but \(p_v \) cannot

Idea 2: for any \(K = S \cup T \), large contribution comes from one pair of terminals \(s \in S, t \in T \)

- (up to factor)
- enough to “take care” of all pairs
- enough to “take care” of all pairs \(s, t \)
Actual Sampling

\[
p_v = P \max_{s,t} \frac{\min\{c_{v,s},c_{v,t}\}}{\sum_u \min\{c_{u,s},c_{u,t}\}}
\]

(proof idea)
1) over-estimates the contribution \(\rightarrow \) concentration
2) Apply union bound over all choices of cuts
3) \(\sum_v p_v \leq F k^2 \)

oversampling (if there were only two terminals, how important would be?)

factor \((k/\varepsilon)\) how important would be?
Open Questions

- Extend to **general networks**?
 - Want to beat size 2^k (exact sparsification)
 - Need to sample other structures (flow paths??)

- What about **flow-sparsifiers**?
 - In bipartite networks: ✓ (our technique extends)
 - In general networks: no bound $s'(k,^2)$ is known
 - **A positive indication**: can build there is a data structure of size $(1/^2)^k^2$
 (“big table” with all values)
Generalizing Gomory-Hu Trees?

Theorem [Gomory-Hu'61]. In every network G, all the minimum st-cuts can be represented by a tree (on the same vertex set).
- Surprising redundancy! size $O(n)$ vs. the original graph’s $O(n^2)$

Desirable extensions:
- 3-way: represent all minimum $\{s,t,u\}$-cuts
- p-sets: represent all minimum $\{s_1,\ldots,s_p\} - \{t_1,\ldots,t_p\}$ cuts
- Any redundancy at all?

Theorem 7 [Chitnis-Kamma-K]: The number of distinct
- 3-way cuts is $\Theta(n^2)$
- p-set cuts is $\Theta(n^{2p-1})$
- These bounds are tight
- But non-constructive and provide no compression
Gomory-Hu Tree for Terminals

Corollary of [Gomory-Hu'61]. Can represent all terminal cuts (i.e., only), using size $O(k)$

Question: Does it extend to all 3-way cuts? All p-set cuts?

Want a bound that depends only on k (not on n)

Observe: p-set cuts is a special case of mimicking networks

Our bounds on number of distinct cuts extend

But they are non-constructive:

Currently looking at (information-theoretic) lower bounds
Terminal Distances

- Graph \(G \) with edge lengths \(l: E(G) \rightarrow \mathbb{R}_+ \). ("huge" network)
- \(k \) terminals \(K^{1/2} V(G) \) ("important" vertices)

We care about terminal distances:
- \(d_G(s,t) = \) shortest-path distance according to \(l \) between \(s,t \in 2K \).
A distance-preserving minor of \((G, l)\) is a minor \(G'\) with edge-lengths \(l'\) that contains the same \(k\) terminals and
\[d_G(s, t) = d_{G'}(s, t).\]

Why require a minor? To avoid a trivial solution…

Vertex Sparsification of Cuts, Flows, and Distances
Our Results [K.-Nguyen-Zondiner’14]

We ask: What is the smallest $f^*(k)$ such that every k-terminal graph G admits a distance-preserving minor G' with $|V(G')| \leq f^*(k)$?

<table>
<thead>
<tr>
<th>Graph Family \mathcal{F}</th>
<th>Bounds on $f^*(k, \mathcal{F})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>General Graphs</td>
<td>$\Omega(k^2)$, $O(k^4)$</td>
</tr>
<tr>
<td>Planar Graphs</td>
<td>$\Omega(k^2)$, $O(k^4)$</td>
</tr>
<tr>
<td>Treewidth p</td>
<td>$\Omega(pk)$, $O(p^3k)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph Family \mathcal{F}</th>
<th>Bounds on $f^*(k, \mathcal{F})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>General Graphs</td>
<td>$\Omega(k^2)$, $O(k^4)$</td>
</tr>
<tr>
<td>Planar Graphs</td>
<td>$\Omega(k^2)$, $O(k^4)$</td>
</tr>
<tr>
<td>Treewidth p</td>
<td>$\Omega(pk)$, $O(p^3k)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph Family \mathcal{F}</th>
<th>Bounds on $f^*(k, \mathcal{F})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>General Graphs</td>
<td>$\Omega(k^2)$, $O(k^4)$</td>
</tr>
<tr>
<td>Planar Graphs</td>
<td>$\Omega(k^2)$, $O(k^4)$</td>
</tr>
<tr>
<td>Treewidth p</td>
<td>$\Omega(pk)$, $O(p^3k)$</td>
</tr>
</tbody>
</table>
Naive algorithm:
1. Consider the graph induced by shortest paths between the terminals
2. Eliminate all non-terminals with degree 2

Analysis:
- Shortest paths between terminals → pairs of paths
- Each pair incurs at most two vertices of degree ≥ 2 ("intersections")
- Thus, number of non-terminals is at most $O(k^4)$
Outline of our original proof:
- G is a 2-D grid (with specific edge-lengths and terminals)
- Main lemma: Any G' must have a planar separator of size $\Omega(k)$
- Using the planar separator theorem, $|V(G')| \geq \Omega(k^2)$

More elementary proof:
- G is just a $(k/4) \times (k/4)$ grid
- Terminals: the boundary vertices
- In G', “horizontal” shortest-paths (from left to right terminals) do not intersect
- Same for “vertical” shortest-paths
- Every horizontal path must intersect every vertical path
- These $\Theta(k^2)$ intersection points must be distinct

Proof extends to $(1+\varepsilon)$-approximation, proving $|V(G')| \geq \Omega(1/\varepsilon^2)$.
Our Results [Kamma-K.-Nguyen’14]

- **Theorem 8.** Every k-terminal graph G with edge-lengths l admits a polylog(k) distance-approximating minor of size k.
 - I.e., a minor G' containing only the terminals with new edge-lengths l' whose terminal-distances approximate G within factor polylog(k).

- Previously:
 - Approximation factor k is easy
 - Probabilistic approximation factor $O(\log k)$ (i.e., by a convex combination of minors) [Englert-Gupta-K.-Raecke-TalgamCohen-Talwar’10]
Further Questions

About distances:

- Close the gap (for exact version) between $\Omega(k^2)$ and $O(k^4)$
 - For general and for planar graphs
- What about $1+\epsilon$ approximation?
- Other extreme: Best approximation using a minor of size k?
 - Prove a lower bound of $\Omega(\log\log k)$?

High-level plan:

- Maintain other combinatorial properties
- Discover redundancies (exploit them by data structures?)
- Matching lower bounds (information-theoretic?)

Thank You!